VLE Measurements of Binary Mixtures of Methanol, Ethanol, 2-Methoxy-2-methylpropane, and 2-Methoxy-2-methylbutane at 101.32 kPa

Alberto Arce,* José Martínez-Ageitos, and Ana Soto

Department of Chemical Engineering, University of Santiago de Compostela, E-15706 Santiago, Spain

Isobaric vapor—liquid equilibrium data for 2-methoxy-2-methylpropane + methanol, 2-methoxy-2-methylpropane + ethanol, methanol + 2-methoxy-2-methylbutane, ethanol + 2-methoxy-2-methylbutane, and 2-methoxy-2-methylpropane + 2-methoxy-2-methylbutane were determined at 101.32 kPa. Fredenslund *et al.*'s test confirmed the results to be thermodynamically consistent. The VLE data were satisfactorily correlated using the Wilson, NRTL, and UNIQUAC equations for liquid phase activity coefficients and adequately predicted using the ASOG, UNIFAC, UNIFAC–Dortmund, and UNIFAC–Lyngby group contribution methods.

Introduction

In recent years, increasing use of ethers as oxygenated additives for gasoline has necessitated large increases in worldwide ether production, with important implications for the hydrocarbon processing industry. The ether most widely added to gasoline is 2-methoxy-2-methylpropane (more commonly MTBE, methyl *tert*-butyl ether); an effective but less widely used ether oxygenate is 2-methoxy-2methylbutane (TAME, *tert*-amyl methyl ether). These ethers are used in combination with methanol and ethanol cosolvents as octane-enhancing agents and antipollutants in gasoline blends. The thermodynamics of ether + alcohol mixtures are thus of some interest. The literature contains vapor-liquid equilibrium (VLE) measurements for MTBE

methanol mixtures subjected to the salt effect (Velasco *et al.*, 1990) and TAME + methanol and TAME + ethanol mixtures (Palczewska-Tulinska *et al.*, 1990) and several papers reporting vapor pressures for TAME and MTBE (Krähenbühl and Gmehling, 1994) and mixtures of these ethers with hydrocarbons. In this paper we report VLE data for the binary systems MTBE + methanol, MTBE + ethanol, methanol + TAME, ethanol + TAME, and MTBE

TAME. The thermodynamic consistency of the experimental results was checked using the test of Fredenslund *et al.* (1977). The results were correlated using the Wilson (Wilson, 1964), NRTL (Renon and Prausnitz, 1968), and UNIQUAC (Abrams and Prausnitz, 1975) equations and compared with the predictions of the ASOG (Kojima and Tochigi, 1979; Tochigi *et al.*, 1990), UNIFAC (Fredenslund *et al.*, 1977), UNIFAC–Dortmund (Weidlich and Gmehling, 1987; Gmehling *et al.*, 1993), and UNIFAC–Lyngby (Larsen *et al.*, 1987) group contribution methods.

Experimental Section

Materials. Methanol and ethanol were supplied by Merck with nominal purities >99.7 and >99.5 mass %, respectively; TAME was supplied by Fluka Chemika with nominal purity >98.9 mass %; none was subjected to further purification. MTBE was supplied by Aldrich and was redistilled prior to use, its final purity being >99.7 mass %. Table 1 lists the measured densities, refractive indices, and boiling points of the chemicals used, together with published values. Table 1. Densities (*d*), Refractive Indices (n_D), and Boiling Points (T_b) of the Compounds

	d(29 g·	8.15 K)/ cm ⁻³	n _D (2	98.15 K)	T _b (101.32 kPa)/ K		
compd	exp	lit.	exp	lit.	exp	lit.	
methanol	0.7866	0.786 64 ^a	1.3264	1.326 52 ^a	337.65	337.696 ^a	
ethanol	0.7852	0.784 93 ^a	1.3592	1.359 41 ^a	351.44	351.443 ^a	
MTBE	0.7356	0.735 28 ^c	1.3663	1.366 3 ^c	328.11	328.32^{b}	
TAME	0.7657	0.765 77 ^d	1.3858	$1.385 \ 8^{d}$	359.33	359.39^{b}	

^a Riddick *et al.*, 1986. ^b Krähenbühl and Gmehling, 1994. ^c Daubert and Danner, 1989. ^d Linek, 1987.

Table 2. Composition Dependence at 25 °C of the Densities (*d*) and Refractive Indices (n_D) of Some of the Binary Mixtures Studied

	TAME methan	(1) + ol (2)	TAME ethano	(1) + ol (2)	TAME (1) + MTBE (2)		
<i>x</i> ₁ (m.f.)	d∕/g•cm ^{−3}	n _D	d∕/g•cm ^{−3}	n _D	d∕g•cm ^{−3}	n _D	
0.05	0.7850	1.3355	0.7839	1.3624	0.7372	1.3672	
0.10	0.7836	1.3430	0.7828	1.3652	0.7389	1.3684	
0.15	0.7822	1.3492	0.7817	1.3676	0.7406	1.3695	
0.20	0.7810	1.3544	0.7806	1.3698	0.7423	1.3705	
0.25	0.7799	1.3588	0.7795	1.3717	0.7440	1.3716	
0.30	0.7787	1.3626	0.7785	1.3735	0.7456	1.3727	
0.35	0.7777	1.3659	0.7775	1.3750	0.7472	1.3737	
0.40	0.7767	1.3687	0.7765	1.3764	0.7488	1.3747	
0.45	0.7757	1.3712	0.7755	1.3777	0.7503	1.3757	
0.50	0.7747	1.3735	0.7746	1.3788	0.7518	1.3767	
0.55	0.7738	1.3754	0.7736	1.3799	0.7533	1.3777	
0.60	0.7729	1.3772	0.7728	1.3808	0.7548	1.3786	
0.65	0.7720	1.3788	0.7719	1.3817	0.7563	1.3796	
0.70	0.7712	1.3802	0.7710	1.3825	0.7577	1.3805	
0.75	0.7703	1.3814	0.7702	1.3832	0.7591	1.3814	
0.80	0.7695	1.3826	0.7693	1.3839	0.7604	1.3823	
0.85	0.7686	1.3836	0.7684	1.3845	0.7618	1.3832	
0.90	0.7677	1.3844	0.7676	1.3850	0.7631	1.3841	
0.95	0.7667	1.3852	0.7667	1.3854	0.7644	1.3850	

Apparatus and Procedure. Measurements were performed in a Labodest apparatus, recycling both liquid and vapor phases (Fischer Labor und Verfahrenstechnik, Germany), which was equipped with a Fischer digital manometer and a Heraeus QuaT100 quartz thermometer that measured to within ± 0.01 kPa and ± 0.02 K, respectively. The compositions of vapor and liquid phases were determined by densimetry and refractometry. For the mixtures of methanol and ethanol with MTBE, previously deter-

Figure 1. Variation of the natural logarithm of the activity coefficient of each component and G^{E}/RT with liquid phase composition, for mixtures of (a) MTBE (1) + methanol (2), (b) MTBE (1) + ethanol (2), (c) ethanol (1) + TAME (2), and (d) methanol (1) + TAME (2).

mined data for the composition dependence of the densities and refractive indices were used (Arce *et al.*, 1995a, 1995b). For the mixtures with TAME, these data were determined here, measuring the densities to within $\pm 0.0001 \text{ g} \cdot \text{cm}^{-3}$ in an Anton Paar DSA 48 digital vibrating tube densimeter, and the refractive indices to within ± 0.0001 with an ATAGO RX-1000 refractometer (Table 2). The maximum deviation in composition, as estimated by comparison of selected results with those for samples prepared by weighing, was ± 0.001 mole fraction.

Experimental Results and Data Treatment

For vapor and liquid phases in equilibrium at pressure *P* and temperature *T*,

$$y_i \phi_i P = x_{ij'i} P_i^{\rm S} \phi_i^{\rm S} \exp\left[\frac{V_i^{\rm L}(P - P_i^{\rm S})}{RT}\right]$$
(1)

where x_i and y_i are the mole fractions of component *i* in the liquid and vapor phases respectively, γ_i is its activity coefficient, $V_i^{\rm L}$ is its molar volume in the liquid phase, ϕ_i and $\phi_i^{\rm S}$ are its coefficient of fugacity and coefficient of fugacity at saturation, respectively, and $P_i^{\rm S}$ is its saturated vapor pressure. In this work, $V_i^{\rm L}$ was calculated from the correlation of Yen and Woods (1966), ϕ_i and $\phi_i^{\rm S}$

 Table 3. Antoine Coefficients A, B, and C for Equation 2

			-
compd	Α	В	С
methanol ethanol MTBE TAME	7.205 19 ^a 7.168 79 ^a 6.070 34 ^b 6.067 82 ^b	-1581.993^a -1552.601^a -1158.912^b -1256.258^b	$egin{array}{c} -33.439^a\ -50.731^a\ -43.200^b\ -50.100^b \end{array}$

^a Riddick et al., 1986. ^b Krähenbühl and Gmehling, 1994.

from the second virial coefficient by the method of Hayden and O'Connell (1975), and P_i^S from Antoine's equation,

$$\log(P_i^{\rm S}/{\rm kPa}) = A + \frac{B}{T/{\rm K} + C}$$
(2)

using the coefficients A, B, and C given in Table 3.

For each binary system studied, Table 4 lists the experimental values for *x*, *y*, *T*, the activity coefficients, and G^{E}/RT . For the ether + alcohol mixtures, Figure 1 shows the variation of ln γ_i and G^{E}/RT with liquid phase composition (*x_i*). Fredenslund's test for thermodynamic consistency (Fredenslund *et al.*, 1977) was applied to the experimental data, yielding a third-order Legendre polynomial for MTBE + methanol, MTBE + ethanol, methanol + TAME, and MTBE + TAME, and a second-order polynomial for ethanol + TAME. The mean deviations between the experimental and calculated vapor phase mole fraction compositions

Dinary S	ystems										
<i>T</i> /K	<i>X</i> 1	y_1	γ1	γ2	G^{E}/RT	<i>T</i> /K	<i>X</i> 1	y_1	γ1	<i>γ</i> 2	$G^{\rm E}/RT$
					Methanol (1)	+ TAME (2)					
353.66	0.0383	0.1934	2.9412	1.0000	0.0413	336.00	0.5662	0.6838	1.2959	1.5583	0.3392
351.27	0.0565	0.2674	2.9787	0.9958	0.0577	335.59	0.6546	0.7128	1.1855	1.8074	0.3158
349.79	0.0714	0.3078	2.8497	1.0009	0.0756	330.43	0.7114	0.7320	1.1273	2.0287	0.2894
345.96	0.1135	0.4150	2.7506	1.0013	0.1160	335.35	0.7678	0.7569	1.0816	2.3039	0.2540
343.75	0.1495	0.4683	2.5446	1.0199	0.1564	335.36	0.8038	0.7755	1.0575	2.5217	0.2264
342.18	0.1847	0.5061	2.3526	1.0415	0.1912	335.42	0.8401	0.7967	1.0365	2.8020	0.1949
340.96	0.2223	0.5357	2.1608	1.0699	0.2238	335.70	0.8928	0.8353	1.0108	3.3667	0.1397
340.00	0.2527	0.5595	2.0548	1.0918	0.2476	335.98	0.9217	0.8641	1.0016	3.7782	0.1056
339.25	0.2844	0.5779	1.9376	1.1213	0.2700	336.39	0.9512	0.9028	0.9978	4.2932	0.0690
337 35	0.4122	0.6358	1.7555	1.1772	0.2387	337.38	0.9809	0.9796	0.9978	6 6993	0.02.94
336.76	0.4672	0.6526	1.4579	1.3549	0.3380	001.00	0.0000	0.0700	0.0010	0.0000	0.0100
					Ethanol (1)	⊥ TAME (9)					
358.88	0.0087	0.0133	1.1942	1.0184	0.0197	346.92	0.5124	0.5494	1.2874	1.3640	0.2808
358.37	0.0154	0.0359	1.8531	1.0166	0.0257	346.83	0.5728	0.5774	1.2136	1.4659	0.2743
357.88	0.0211	0.0567	2.1723	1.0146	0.0306	346.81	0.5820	0.5820	1.2047	1.4831	0.2731
357.31	0.0269	0.0797	2.4429	1.0123	0.0359	346.85	0.6302	0.6060	1.1557	1.5798	0.2603
356.46	0.0369	0.1115	2.5667	1.0122	0.0465	346.92	0.6732	0.6292	1.1195	1.6805	0.2456
357.93	0.0471	0.1303	2.5100	1.0128	0.0556	347.00	0.7087	0.0470	1.0905	1.7000	0.2308
351.56	0.1331	0.3156	2.3987	1.0037	0.1197	347.45	0.7858	0.7000	1.0431	2.0474	0.1867
350.59	0.1642	0.3509	2.2405	1.0175	0.1470	348.02	0.8457	0.7516	1.0166	2.3183	0.1437
349.53	0.2143	0.3920	1.9947	1.0482	0.1849	348.72	0.8958	0.8072	1.0021	2.6154	0.1021
348.85	0.2513	0.4196	1.8675	1.0730	0.2097	349.13	0.9181	0.8380	0.9987	2.7657	0.0821
348.19	0.3045	0.4512	1.6985	1.1156	0.2374	349.82	0.9502	0.8913	0.9987	2.9973	0.0535
347.73	0.3520	0.4764	1.5781	1.1598	0.2566	350.22	0.9655	0.9203	0.9992	3.1392	0.0387
347.35	0.4468	0.5210	1 3893	1.2033	0.2030	550.55	0.3301	0.3724	1.0010	5.7155	0.0140
017.11	0.1100	0.0210	1.0000	1.2070		Madlaanal (9)					
337 05	0.0071	0.0310	3 5056	1 0001	MIDE(1) + 0.0000	325.26	0 4373	0 5815	1 4810	1 2358	0 2000
336.48	0.0141	0.0587	3.3921	0.9999	0.0171	325.08	0.4638	0.5936	1.4329	1.2699	0.2950
335.58	0.0276	0.1041	3.1455	0.9988	0.0305	324.94	0.4874	0.6038	1.3925	1.3036	0.2973
334.85	0.0383	0.1386	3.0767	0.9989	0.0420	324.79	0.5169	0.6166	1.3466	1.3481	0.2981
334.33	0.0468	0.1618	2.9806	1.0008	0.0519	324.61	0.5561	0.6327	1.2909	1.4179	0.2970
333.39	0.0637	0.2086	2.8947	0.9984	0.0662	324.51	0.5859	0.6453	1.2529	1.4753	0.2932
332.02 339.19	0.0737	0.2380	2.0903	0.9941	0.0729	324.43	0.0073	0.6550	1.2200	1.5162	0.2891
331.96	0.0920	0.2765	2.7618	0.9967	0.0905	324.37	0.6560	0.6763	1.1766	1.6344	0.2757
331.52	0.1020	0.2976	2.7137	0.9961	0.0983	324.33	0.6789	0.6869	1.1557	1.6980	0.2683
331.07	0.1143	0.3167	2.6098	1.0006	0.1102	324.32	0.6906	0.6925	1.1455	1.7323	0.2638
330.58	0.1274	0.3389	2.5401	1.0026	0.1210	324.32	0.7008	0.6973	1.1365	1.7641	0.2595
330.07	0.1423	0.3609	2.4569	1.0071	0.1339	324.33	0.7092	0.7016	1.1294	1.7892	0.2555
329.02	0.1565	0.3790	2.3800	1.0128	0.1404	324.34	0.7203	0.7070	1.1200	1.8269	0.2301
328.43	0.2037	0.4286	2.1366	1.0385	0.1847	324.37	0.7443	0.7194	1.1013	1.9133	0.2377
327.94	0.2257	0.4499	2.0530	1.0498	0.2000	324.41	0.7696	0.7341	1.0849	2.0115	0.2237
327.54	0.2467	0.4677	1.9754	1.0622	0.2134	9324.50	0.7928	0.7484	1.0701	2.1113	0.2085
327.18	0.2683	0.4851	1.9036	1.0744	0.2252	324.61	0.8189	0.7652	1.0549	2.2475	0.1904
320.77	0.2933	0.5035	1.8292	1.0918	0.2392	324.82	0.8473	0.7802	1.0399	2.4108	0.1675
326.05	0.3489	0.5392	1.6818	1.1352	0.2639	326.15	0.9441	0.8891	1.0093	3.2661	0.0749
325.72	0.3824	0.5563	1.5985	1.1694	0.2760	326.83	0.9717	0.9322	1.0057	3.8523	0.0437
325.45	0.4142	0.5705	1.5255	1.2079	0.2856	327.57	0.9953	0.9757	1.0037	8.1021	0.0135
					MTBE (1) +	Ethanol (2)					
351.34	0.0006	0.0034	3.0006	1.0011	0.0018	335.69	0.2929	0.6160	1.6891	1.0390	0.1806
351.21	0.0019	0.0091	2.5442	1.0017	0.0034	335.13	0.3149	0.6324	1.6393	1.0524	0.1906
351.18	0.0020	0.0099	2.6315	1.0021	0.0040	334.09	0.3623	0.6655	1.5455	1.0778	0.2055
351.05	0.0034	0.0103	2.5507	1.0020	0.0052	333.33 339.85	0.3970	0.0847	1.4010	1.1127	0.2207
350.73	0.0062	0.0305	2.6442	1.0026	0.0086	332.29	0.4568	0.7161	1.3912	1.1648	0.2337
350.59	0.0077	0.0376	2.6337	1.0021	0.0095	331.79	0.4907	0.7308	1.3416	1.2052	0.2393
350.33	0.0105	0.0492	2.5435	1.0028	0.0126	331.35	0.5211	0.7455	1.3058	1.2366	0.2407
350.11	0.0131	0.0610	2.5412	1.0015	0.0137	330.95	0.5521	0.7579	1.2682	1.2813	0.2422
349.81	0.0170	0.0745	2.4094	1.0026	0.0175	330.56	0.5883	0.7702	1.2238	1.3473	0.2415
346.39 347 97	0.0311	0.1508	2.3037	1.0019	0.0288	329.89	0.6207	0.7838	1.1940	1.4006	0.2378
347.40	0.0449	0.1838	2.3910	1.0003	0.0394	329.49	0.6943	0.8150	1.1334	1.5368	0.2183
346.90	0.0522	0.2071	2.3470	0.9989	0.0435	329.28	0.7161	0.8225	1.1161	1.6036	0.2127
346.24	0.0624	0.2361	2.2765	0.9989	0.0503	329.06	0.7431	0.8338	1.0977	1.6771	0.2021
345.47	0.0698	0.2677	2.3541	0.9957	0.0557	328.90	0.7677	0.8439	1.0806	1.7559	0.1903
344.65	0.0833	0.3002	2.2602	0.9982	0.0662	328.68	0.7930	0.8545	1.0664	1.8564	0.1791
344.20 343 68	0.0908	0.3108	2.2101 2.9119	0.9983 0 9979	0.0703	328.34	0.0133	0.00000	1.0048	1.9398 2.0039	0.1009
342.92	0.1129	0.3701	2.1524	0.9969	0.0838	328.24	0.8728	0.8952	1.0287	2.2263	0.1265
342.18	0.1246	0.3937	2.1167	1.0027	0.0958	328.15	0.8942	0.9079	1.0211	2.3640	0.1097
341.28	0.1434	0.4300	2.0583	1.0004	0.1039	328.12	0.9063	0.9156	1.0169	2.4509	0.0992
340.56	0.1578	0.4548	2.0178	1.0032	0.1135	328.11	0.9136	0.9196	1.0135	2.5339	0.0926
339.30	0.1855	0.5037	1.9682	0.9965	0.1228	328.06	0.9368	0.9374	1.0090	2.7068	0.0714
336 01	0.2224	0.5545	1.0809	0.9975	0.1380	328.00 328.06	0.9020	0.9384 0 9830	1.0040	3.0303 3.7506	0.0455
336.24	0.2766	0.6021	1.7206	1.0273	0.1696	328.09	0.9965	0.9918	1.0025	6.4204	0.0090

Table 4. Boiling Temperatures (*T*), Liquid and Vapor Mole Fractions (x_i , y_i), Activity Coefficients (γ_i), and G^{E}/RT for the Binary Systems

Table 4 (Continued)

<i>T</i> /K	<i>X</i> ₁	y_1	γ1	γ_2	G^{E}/RT	<i>T</i> /K	<i>X</i> ₁	y_1	γ1	γ_2	G^{E}/RT
					MTBE (1) -	+ TAME (2)					
358.31	0.0180	0.0531	1.2758	0.9940	-0.0015	341.22	0.4738	0.7064	1.0152	0.9745	-0.0065
357.16	0.0438	0.1110	1.1279	0.9910	-0.0034	340.23	0.5074	0.7365	1.0166	0.9652	-0.0091
356.12	0.0670	0.1569	1.0699	0.9930	-0.0020	339.44	0.5301	0.7521	1.0164	0.9772	-0.0022
354.91	0.0950	0.2134	1.0583	0.9899	-0.0038	338.73	0.5559	0.7709	1.0140	0.9785	-0.0019
353.39	0.1287	0.2778	1.0574	0.9878	-0.0035	337.57	0.5979	0.8016	1.0139	0.9730	-0.0028
351.97	0.1650	0.3327	1.0248	0.9941	-0.0009	336.94	0.6225	0.8159	1.0096	0.9824	-0.0007
350.23	0.2068	0.4010	1.0316	0.9906	-0.0010	336.09	0.6531	0.8381	1.0135	0.9678	-0.0026
348.90	0.2440	0.4524	1.0219	0.9900	-0.0023	334.85	0.7052	0.8707	1.0116	0.9490	-0.0073
347.59	0.2799	0.5021	1.0241	0.9844	-0.0046	333.78	0.7478	0.8937	1.0110	0.9463	-0.0058
346.38	0.3126	0.5432	1.0251	0.9828	-0.0041	332.83	0.7884	0.9140	1.0092	0.9432	-0.0052
345.29	0.3443	0.5815	1.0265	0.9772	-0.0061	331.79	0.8340	0.9346	1.0068	0.9482	-0.0032
344.33	0.3735	0.6119	1.0225	0.9780	-0.0056	330.89	0.8728	0.9512	1.0064	0.9532	-0.0005
343.40	0.4024	0.6418	1.0214	0.9751	-0.0065	329.59	0.9341	0.9753	1.0037	0.9754	0.0018
342.46	0.4321	0.6676	1.0158	0.9816	-0.0037	328.84	0.9696	0.9882	1.0028	1.0376	0.0038

Figure 2. For the ether + alcohol systems studied, the experimental vapor-liquid equilibrium data (O) and the corresponding UNIQUAC correlation (-).

(0.0048 for MTBE + methanol, 0.0053 for MTBE + ethanol, 0.0108 for methanol + TAME, 0.0092 for ethanol + TAME, and 0.0073 for MTBE + TAME) confirm consistency.

All the binary ether + alcohol systems studied formed azeotropes at the minimum boiling point. These boiling points and the corresponding compositions are listed in Table 5.

Correlation. Correlation of the experimental (*P*, *T*, *x*, *y*) results was performed by a nonlinear regression method based on the maximum-likelihood principle using the

Figure 3. For the ether + alcohol systems studied, the experimental vapor–liquid equilibrium data (\bigcirc , \square) and the corresponding UNIFAC–Dortmund prediction (-).

programs published by Prausnitz *et al.* (1980). The models used for the liquid phase activity coefficients were Wilson's equation (Wilson, 1964), the NRTL equation (Renon and Prausnitz, 1968), setting the nonrandomness parameter α to different values and selecting the value giving the best correlation, and the UNIQUAC equation (Abrams and Prausnitz, 1975) with the area parameter q' set to 0.92 for methanol and to 0.96 for ethanol (Anderson and Prausnitz, 1978). Table 6 lists the model parameters fitted for each system, together with the root mean square deviations in

Table 5. Compositions (Mole Fraction) and Boiling Points of the Azeotropes Formed by the Binary Ether + Alcohol Systems

system	<i>X</i> 1	T_b/K
MTBE (1) + methanol (2)	0.691	324.32
MTBE (1) + ethanol (2)	0.937	328.06
methanol $(1) + TAME (2)$	0.749	335.34
ethanol (1) + TAME (2)	0.582	346.81

Table 6. Parameters and Root Mean Square Deviations (σ) for the Wilson, NRTL, and UNIQUAC Models

	•	-		•						
model	parameters ^a	<i>σ</i> (<i>T</i>)/K	$\sigma(\mathbf{x})$	$\sigma(y)$	<i>σ</i> (<i>P</i>)/kPa					
	Methanol (1) +	TAME (2)								
Wilson	$\Delta\lambda_{12} = 5399.45, \ \Delta\lambda_{21} = -632.12$	0.20	0.0038	0.0059	0.004					
NRTL ($\alpha = 0.47$)	$\Delta g_{12} = 2700.18, \Delta g_{21} = 1981.29$	0.20	0.0040	0.0059	0.004					
UNIQUAC	$\Delta u_{12} = -863.07, \ \Delta u_{21} = 6227.17$	0.20	0.0039	0.0060	0.004					
	Ethanol $(1) + 7$	ГАМЕ (2)								
Wilson	$\Delta \lambda_{12} = 4462.73, \ \Delta \lambda_{21} = -590.74$	0.12	0.0033	0.0033	0.003					
NRTL ($\alpha = 0.1$)	$\Delta g_{12} = 1289.17, \ \Delta g_{21} = 2047.02$	0.11	0.0032	0.0029	0.002					
UNIQUAC	$\Delta u_{12} = -1546.49, \ \Delta u_{21} = -6445.36$	0.12	0.0032	0.0030	0.003					
MTBE (1) + Methanol (2)										
Wilson	$\Delta \lambda_{12} = -1492.77, \ \Delta \lambda_{21} = 5505.18$	0.10	0.0026	0.0023	0.002					
NRTL ($\alpha = 0.47$)	$\Delta g_{12} = 2373.37, \ \Delta g_{21} = 1582.18$	0.10	0.0030	0.0024	0.002					
UNIQUAC	$\Delta u_{12} = 6067.59, \Delta u_{21} = -1066.92$	0.09	0.0025	0.0020	0.002					
	MTBE(1) + E	thanol (2)								
Wilson	$\Delta \lambda_{12} = -1371.85, \ \Delta \lambda_{21} = 4826.28$	0.12	0.0030	0.0027	0.002					
NRTL ($\alpha = 0.47$)	$\Delta g_{12} = 2594.20, \ \Delta g_{21} = 797.55$	0.12	0.0032	0.0037	0.002					
UNIQUAC	$\Delta u_{12} = 6437.83, \Delta u_{21} = -1703.89$	0.10	0.0024	0.0026	0.002					
	$\mathbf{MTBE}(1) + \mathbf{TAME}(2)$									
Wilson	$\Delta \lambda_{12} = -1781.13, \ \Delta \lambda_{21} = 2995.15$	0.09	0.0029	0.0027	0.002					
NRTL ($\alpha = 0.1$)	$\Delta g_{12} = 7379.27, \ \Delta g_{21} = -5834.62$	0.08	0.0028	0.0024	0.002					
UNIQÙAC	$\Delta u_{12} = 1921.46, \ \Delta u_{21} = -1419.34$	0.08	0.0028	0.0024	0.002					

All energy parameters in J·mol⁻¹.

Table 7. Root Mean Square Deviations (σ) between the Experimental Boiling Temperatures (T_b) and Vapor Phase Compositions (y) and Those Calculated by the ASOG, UNIFAC, and Modified UNIFAC Methods

	ASOG		UNIFAC		UNIFAC-Dortmund		UNIFAC-Lyngby	
system	σ ($T_{\rm b}/{\rm K}$)	σ (y)	σ ($T_{\rm b}/{\rm K}$)	σ (y)	σ (<i>T</i> _b /K)	σ (y)	σ (<i>T</i> _b /K)	σ (y)
methanol (1) + TAME (2)	1.86	0.0262	0.67	0.0158	0.38	0.0124	0.56	0.0095
ethanol $(1) + TAME (2)$	0.40	0.0104	0.23	0.0094	0.15	0.0109	0.47	0.0108
MTBE (1) + methanol (2)	1.78	0.0300	0.48	0.0135	0.12	0.0070	0.48	0.0068
MTBE (1) + ethanol (2)	0.44	0.0048	0.43	0.0081	0.35	0.0100	0.75	0.0154
MTBE (1) + TAME (2)	0.23	0.0090	0.18	0.0086	0.15	0.0083	0.16	0.0084

, *x*, and *y*. Figure 2 compares the UNIQUAC temperature–composition curves with the corresponding experimental data.

Prediction. The VLE data were predicted using the ASOG (Kojima and Tochigi, 1979; Tochigi *et al.*, 1990), UNIFAC (Fredenslund *et al.*, 1977), UNIFAC–Dortmund (Weidlich and Gmehling, 1987; Gmehling *et al.*, 1993), and UNIFAC–Lyngby (Larsen *et al.*, 1987) group contribution methods to calculate the liquid phase activity coefficients. For the UNIFAC method, the structural and group interaction parameters recommended by Gmehling *et al.* (1982) were employed. Table 7 lists the root mean square deviations between the experimental VLE data and those predicted by each model. Figure 3 compares the VLE data predicted using the UNIFAC–Dortmund method with the experimental data for the ether + alcohol mixtures studied.

Discussion

The VLE data obtained for the binary ether + alcohol systems and the MTBE + TAME system were all shown to be thermodynamically consistent. Nonetheless, the fact that mixtures containing TAME consistently gave higher deviations suggests that revision of some of the molecular parameters for TAME (gyration radius, dipole moment, solvation parameters, etc.) used in our calculations is called for.

The Wilson, NRTL, and UNIQUAC models were adequate for correlation of the VLE data obtained, although, on average, the UNIQUAC model gave very slightly smaller deviations in *T*, *x*, and *y*. Likewise, the VLE data were generally satisfactorily predicted by the ASOG, UNI-FAC, and modified UNIFAC group contribution methods, although the ASOG method gave somewhat larger deviations, specially in the equilibrium temperatures for the mixtures containing methanol.

Acknowledgment

This work was partly financed by the DGICYT (Spain) under Project PB94-0658.

Literature Cited

- Abrams, D. S.; Prausnitz, J. M. Statistical Thermodynamics of Liquid Mixtures: A New Expression for the Excess Gibbs Energy of Partly or Completely Miscible Systems. AIChE J. 1975, 21, 116–128.
- Anderson T. F.; Prausnitz, J. M. Application of the UNIQUAC Equation to Calculation of Multicomponent Phase Equilibria. *Ind. Eng. Chem. Process Des. Dev.* **1978**, *17*, 552–561.
- Arce, A.; Martínez-Ageitos, J.; Mendoza, J.; Soto, A. Densities, Refractive Indices, and Excess Molar Volumes of Water + Methanol + 2-Methoxy-2-methylpropane at 298.15 K. J. Chem. Eng. Data 1995a, 40, 647–649.
- Arce, A.; Blanco, A.; Mendoza, J.; Soto, A. Densities, Refractive Indices, and Excess Molar Volumes of Water + Ethanol + 2-Methoxy-2methylpropane at 298.15 K. J. Chem. Eng. Data 1995b, 40, 1285– 1287.

- Daubert, T. E.; Danner, R. P. Physical and Thermodynamic Properties of Pure Chemicals: Data Compilation; Library of Congress Cataloging-in-Publication Data; Hemisphere Publishing Corp.: New York, 1989
- Fredenslund, A.; Gmehling, J.; Rasmussen, P. Vapor-Liquid Equilibria using UNIFAC. A Group Contribution Method; Elsevier: Amsterdam, 1977.
- Gmehling, J.; Rasmussen, P.; Fredenslund, A. Vapor–Liquid Equilibria by UNIFAC Group Contribution. Revision and Extension. 2. *Ind. Eng. Chem. Process Des. Dev.* **1982**, *21*, 118–127. Gmehling, J.; Li, J.; Schiller, M. A Modified UNIFAC Model. 2. Present
- Parameter Matrix and Results for Different Thermodynamic Prop-
- erties. Ind. Eng. Chem. Res. 1993, 32, 178–193. Hayden, J. G.; O'Connell, J. P. A Generalized Method for Predicting Second Virial Coefficients. Ind. Eng. Chem. Process Des. Dev. 1975, 14, 209–216. Kojima, K.; Tochigi, K. Prediction of Vapor-Liquid Equilibria by the
- ASOG Method; Elsevier: Tokyo, 1979.
- Krähenbühl, M. A.; Gmehling, J. Vapor Pressures of Methyl tert-Butyl Ether, Ethyl tert-Butyl Ether, Isopropyl tert-Butyl Ether, tert-Amyl Methyl Ether, and tert-Amyl Ethyl Ether. J. Chem. Eng. Data 1994, *39*, 759–762.
- Larsen, B. L.; Rasmussen, P.; Fredenslund, A. A Modified UNIFAC Group-Contribution Model for Prediction of Phase Equilibria and Heats of Mixing. *Ind. Eng. Chem. Res.* **1987**, *26*, 2274–2286. Linek, J. Excess Volumes and Refractive Indices in the Benzene-*tert*-
- amyl methyl ether and Cyclohexane-tert-amyl methyl ether Systems at 298.15 K. Collect. Czech. Chem. Commun. 1987, 52, 2839.
- Palczewska-Tulinska, M.; Wyrzykowska-Stankiewicz, D.; Cholinski, J.; Zieborak, K. Isobaric vapor-liquid equilibrium in two binary systems involving tert-amyl methyl ether. Fluid Phase Equilib. 1990, 54, -68.

- Prausnitz, J. M.; Anderson, T. F.; Grens, E. A.; Eckert, C. A.; Hsieh, R.; O'Connell, J. P. Computer Calculations for Multicomponent Vapor-Liquid Equilibria; Prentice-Hall, Inc.: Englewood Cliffs, NJ, 1980
- Renon, H.; Prausnitz, J. M. Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures. AIChE J. 1968, 14, 135-144
- Riddick, J. A.; Bunger, W. B.; Sakano, T. K. Organic Solvents, 4th ed.; John Wiley: New York, 1986.
- Tochigi, K.; Tiegs, D.; Gmehling, J.; Kojima, K. Determination of new ASOG parameters. J. Chem. Eng. Jpn. 1990, 23, 453-463.
- Velasco, E.; Cocero, M.; Mato, F. Salt Effect on Vapor-Liquid Equilibrium of Methyl *tert*-Butyl Ether + Methanol at 298.15 K. J. Chem. Eng. Data **1990**, 35, 21–23.
- Weidlich, U.; Gmehling, J. A modified UNIFAC Model. 1. Prediction of VLE, h^{E} , and γ^{∞} . Ind. Eng. Chem. Res. **1987**, 26, 1372–1381
- Wilson, G. M. Vapor-Liquid Equilibrium. XI. A New Expression for the Excess Free Energy of Mixing. J. Am. Chem. Soc. 1964, 86, 127-130.
- Yen, L. C.; Woods, S. S. A Generalized Equation for Computer Calculation of Liquid Densities. AIChE J. 1966, 12, 95-99.

Received for review December 18, 1995. Accepted March 19, 1996.[∞] JE950323O

[®] Abstract published in Advance ACS Abstracts, May 1, 1996.